If f(x) is continuous and increasing function such that domain of g(x)=√f(x)−x be R and h(x)=11−x , then the domain of ϕ(x)=√f(f(f(x)))−h(h(h(x)))) is
R−{0,1}
h(x)=11−x,x≠1h(h(x))=x−1x,x≠0,1⇒h(h(h(x)))=x,x≠0,1
Also g(x)≥0∀ xϵR
⇒f(x)≥x⇒f(f(x))≥f(x)≥x
(∵f(x) is an increasing function)
⇒f(f(f(x)))≥f(f(x))≥f(x)≥x⇒f(f(f(x)))−x≥0∀xϵR−{0,1} ⇒ϕ(x) is defined for all x.Thus xϵR−{0,1}