If f(x) is continuous for all real values of x, then n∑r=11∫0f(r−1+x)dx is equal to,where n is a natural number
A
n∫0f(x)dx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1∫0f(x)dx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
n1∫0f(x)dx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(n−1)1∫0f(x)dx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is An∫0f(x)dx n∑r=11∫0f(r−1+x)dx =1∫0f(x)dx+1∫0f(1+x)dx+1∫0f(2+x)dx+....+1∫0f(n−1+x)dx =1∫0f(x)dx+2∫1f(x)dx+3∫2f(x)dx+....r∫r−1f(x)dx+....+n∫n−1f(x)dx=∫n0f(x)dx