If f(x) is continuous for all real values of x, then n∑r=1∫10f(r−1+x)dx is equal to
A
∫n0f(x)dx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
∫10f(x)dx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
n∫10f(x)dx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(n−1)∫10f(x)dx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A∫n0f(x)dx I=n∑r=1∫10f(r−1+x)dx Substitute r−1+x=t⇒dx=dt and limit of integral changes from ∫10 to ∫rr−1 I=n∑r=1∫10f(r−1+x)dx=n∑r=1∫rr−1f(t)dt I=∫10f(t)dt+∫21f(t)dt+⋯+∫nn−1f(t)dt I=∫n0f(t)dt≡∫n0f(x)dx