If f(x) is twice differentiable function in [c1−1,c2+1] and f′(c1)=f′(c2)=0,f′′(c1)⋅f′′(c2)<0,f(c1)=9,f(c2)=0. Let k and m be the minimum number of the roots of f(x)=0 and f′(x)=0 respectively, in [c1−1,c2+1]
List - IList - II(I) If f′′(c1)−f′′(c2)>0,then k = (P) 1(II) If f′′(c1)−f′′(c2)<0,then k = (Q) 2(III) If f′′(c1)−f′′(c2)>0,then m = (R) 3(IV) If f′′(c1)−f′′(c2)<0,then m = (S) 4
Which of the following is only CORRECT combination?