If f(x)=(1+1x)(1+1x+1)(1+1x+2).......(1+1x+n)
g(x)=(1−1x)(1−1x−1)(1−1x−2).......(1−1x−n) .Find f(x)+g(x).
f(x)=[(x+1)x][(x+2)(x+1)].....[(x+n+1)(x+n)]=[(x+n+1)x]
g(x)=[(x−1)x][(x−2)(x−1)].....[(x−n−1)(x−n)]=[(x−n−1)x]
f(x)+g(x)=(x+n+1+x−n−1)x=2
Shortcut:- Single Substitution
Put x=1, n=0
f(x)= 2
g(x)=0 ⇒ f(x) +g(x) =2
put x=1 and n=0 and look for 2 in the answer options.