If f(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪⎩3(1+|tanx|)α|tanx|;−12<x<0β;x=03(1+∣∣∣sinx3∣∣∣)6|sinx|;0<x<23
is a continuous function at x=0, then the ordered pair (α,β) is equal to
A
(3,3e2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(2,e6)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(3,e6)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(2,3e2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D(2,3e2) f(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪⎩3(1−tanx)α−tanx;−12<x<0β;x=03(1+sinx3)6sinx;0<x<23 ∵f(x) is continuous at x=0 ∴f(0−)=f(0) β=limx→0−f(x) =3limx→0−(1−tanx)α−tanx(1∞ form) =3elimx→0αtanx[tanx] ⇒β=3eα…(1)
Now, f(0)=f(0+) ⇒β=limx→0+3(1+sinx3)6sinx =3⋅limx→0+(1+sinx3)6sinx(1∞ form ) =3elimx→0+6sinx⋅sinx3 ⇒β=3e2…(2)
Now, from (1) and (2) 3eα=3e2=β ∴α=2 and β=3e2