If f(x)=⎧⎪⎨⎪⎩ax2−b,when 0≤x<12,when x=1x+1,when <x≤2 is continuous at x = 1, then the most suitable value of a, b are
If f(x)=⎧⎪ ⎪⎨⎪ ⎪⎩x2, when x<0x, when 0≤x<11x, when x>1 Find: (i) f(12) (ii) f(−2) (iii) f(1) (iv) f(√3) (v) f(√−3)