If f(x)=⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩(4x−1)3sin(xa)ln(1+x23),x≠09(ln4)3,x=0 is continuous at x=0, then the value of a is
A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D3 For f(x) to be continuous at x=0, we must have f(0)=limx→0f(x)⋯(1) ⇒limx→0(4x−1)3sin(xa)ln(1+x23)=limx→0(4x−1)3x3⋅(xa)sin(xa)⋅x23ln(1+x23)⋅3a =3a⋅(limx→04x−1x)3⋅⎛⎜
⎜
⎜
⎜
⎜⎝1limx→0sin(x/a)(x/a)⎞⎟
⎟
⎟
⎟
⎟⎠⋅⎛⎜
⎜
⎜
⎜
⎜⎝1limx→0ln(1+x2/3)(x2/3)⎞⎟
⎟
⎟
⎟
⎟⎠ =3a⋅(ln4)3⋅11⋅11=3a(ln4)3
Using (1), we get ⇒9(ln4)3=3a(ln4)3∴a=3