If f(x)=⎧⎪⎨⎪⎩sin2x−tan2x(ex−1)x2,x≠0k,x=0 is continuous at x=0, then the absolute value of k is
Open in App
Solution
For f(x) to be continuous at x=0 limx→0f(x)=f(0)
Hence, k=limx→0sin2x−tan2x(ex−1)⋅x2 ⇒k=limx→0sin2x−sin2xcos2x(ex−1)⋅x2⇒k=limx→0sin2x(cos2x−1)cos2x(ex−1)⋅x2⇒k=−limx→0[(sin2x2x)(2sin2xx2)(1cos2x)(xex−1)⋅2]⇒k=−1⋅2⋅1⋅1⋅(2)⇒k=−4⇒|k|=4