If f(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩a|x2−15x+56|x−8,x>9b,x=9x−[x]x−8,x<9, where [.] denotes greatest integer function and the function f is continuous then
A
a=12,b=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
a=0,b=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a=−12,b=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
a=−12,b=−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aa=12,b=1 The function is continuous, ∴ Left hand limit f(9−)= Right hand limit f(9+)=f(9) f(9−)=limh→09−h−[9−h]9−h−8=limh→09−h−89−h−8=1 f(9+)=limh→0a|(9+h)2−15(9+h)+56|9+h−8=limh→0a|(h+2)(h+1)|1−h=2a, h>0 f(9)=b ∴f(9−)=f(9+)=f(9) ⇒1=2a=b ⇒a=12,b=1