If f(x)=⎧⎪
⎪⎨⎪
⎪⎩[x]2+sin[x][x]for[x]≠00for[x]=0 where [x] denotes the greatest integer function,
then limx→0f(x), is?
A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Does not exist
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D Does not exist LHL=limx→0−f(x)=limh→0f(0−h) =limh→0[−h]2+sin[−h][−h] =limh→0([−h]+sin[−h][−h]) =−1+sin(−1)(−1)=−1+sin1 RHL=limx→0+f(x)=limh→0f(0+h) =limh→0([h]+sin[h][h]) =0+sin(0)0=0 Since, LHL≠RHL Hence, limx→0f(x) does not exists.