Given:
The function f(x) is continuous at x=0.
∴limx→0−f(x)=limx→0+f(x)=f(0)=2 ................(1)
Now, limx→0−f(x)=limh→0f(0−h)
Thus,
limx→0−f(x)=limh→0f(−h)
= limh→0sin (a+1)(−h)+2sin (−h)−h
= limh→0−sin (a+1)h−2sin h−h
= limh→0sin (a+1)hh+limh→02sin hh
= (a+1)limh→0sin (a+1)h(a+1)h+2 limh→0sin hh
=a+1+2
=a+3 ....................(2)
From equation (1)
limx→0−f(x)=2∴a+3=2
⇒a=−1
Now,
limx→0+f(x)=limh→0(0+h)
∴limx→0+√1+bx−1x=limh→0+√1+bh−1h
=limh→0√1+bh−1h×√1+bh+1√1+bh+1
=limh→0((√1+bh)2−(1)2h(√1+bh+1))=limh→01+bh−1h(√1+bh+1)
=limh→0bhh×[√1+bh)+1]=limh→0b√1+bh+1
= b√1+b×0+1=b1+1=b2
Now, again from equation (1)
limx→0+f(x)=f(0)=2
∴b2=2
⇒b=4
Hence, the values of a=−1 and b=4.