If f(x)=⎧⎨⎩sin[x][x],[x]≠00,[x]=0, where [.]
denotes the greatest integer function, then limx→0f(x) is equal to
We have,
[x]={0,0≤x<1−1,−1≤x<0
∴f(x)={sin(−1)−1,−1≤x<00,0≤x<1
f(x)={sin1,−1≤x<00,0≤x<1
Now,
limx→0−f(x)=limx→0sin1=sin1
limx→0+f(x)=limx→00=0
clearly, limx→0−f(x)≠limx→0+f(x)
thus, limx→0f(x) Does not exist