If f(x)=∣∣
∣
∣∣(1+x)a(1+2x)b11(1+x)a(1+2x)b(1+bx)b1(1+x)a∣∣
∣
∣∣, then find (i) constant term (ii) coefficient of x
Open in App
Solution
Given f(x)=∣∣
∣
∣∣(1+x)a(1+2x)b11(1+x)a(1+2x)b(1+bx)b1(1+x)a∣∣
∣
∣∣
for constant term put x=0⟹f(0)=∣∣
∣
∣∣(1+0)a(1+2(0))b11(1+0)a(1+2(0))b(1+b(0))b1(1+0)a∣∣
∣
∣∣=∣∣
∣∣111111111∣∣
∣∣=0
for coefficient of x differentiate f(x) and put x=0f1(x)=∣∣
∣
∣∣a(1+x)a−12b(1+2x)b−101(1+x)a(1+2x)b(1+bx)b1(1+x)a∣∣
∣
∣∣+∣∣
∣
∣∣(1+x)a(1+2x)b10a(1+x)a−12b(1+2x)b−1(1+bx)b1(1+x)a∣∣
∣
∣∣+∣∣
∣
∣∣(1+x)a(1+2x)b11(1+x)a(1+2x)bb2(1+bx)b−10a(1+x)a−1∣∣
∣
∣∣