If f(x) = ⎧⎪⎨⎪⎩mx2+n,x<0nx+m,0≤x≤1nx3+m,x>1 for what intergers m and n does both limx→0 f(x) and limx→1 f(x) exist?
It is given that limx→0 f(x) and limx→1 f(x) both exist.
⇒limx→0−f(x)=limx→0+ f(x)
and limx→1− f(x) =limx→1+ f(x)
Now limx→0− f(x) = limx→0−(mx2+n)
= limh→0[m(0−h)2+n]
= limh→0[mh2+n] = n
= limx→0+ f(x) = limh→0+ (nx+m)
= limh→0 [n(0+h)+m]
= limh→0 (nh+m) = m
Now = limx→0− f(x) = limh→0+ f(x) ⇒ n = m ...(i)
For = limx→0 f(x) to exist we need m = n
Also = limx→1− = limx→1− (nx+m)
=limh→0 [n(1-h)+m]
= limh→0 (n-nh + m) = n + m
limx→1+ f(x) = limx→1+(nx3+m)
= limh→0[n(1+h)3+m]
= limh→0[n(1+h3+3h2+3h)+m]
= n+m
Now limx→1− f(x) = limx→1+ f(x) ⇒ n+m= n+m
Thus limx→0 f(x) exists for any integral value of m and n, such that they are equal.