wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=mx2+n,x<0nx+m,0x1nx3+m,x>1. For what integeres m and n does both limx0f(x) and limx1f(x) exist ?

Open in App
Solution

Step 1: Solve limx0f(x)
Given f(x)mx2+n,x<0nx+m0x1nx3+m,x>1
Limit exists at x=0 if
L.H.L.=R.H.L.

L.H.L.=limx0f(x)=limh0f(0h)
L.H.L.=limh0f(h)
L.H.L.=limh0(m(h2)+n)
L.H.L.=m(0)2+n=n

R.H.L.=limx0+f(x)=limh0f(0+h)
R.H.L.=limh0f(h)
R.H.L.=limh0(nh+m)
R.H.L.=n(0)+m=m
So, limx0f(x) exists if m=n

Step 2: Solve limx1f(x)
Limit exists at x=1 if
L.H.L.=R.H.L.

L.H.L.=limx1f(x)=limh0f(1h)
L.H.L.=limh0n(1h)+m
L.H.L.=n(10)+m
L.H.L.=n+m

R.H.L.=limx1+f(x)=limh0f(1+h)
R.H.L.=limh0(n(1+h)3+m)
R.H.L.=n(1+0)3+m
R.H.L.=n+m
Since L.H.L.=R.H.L.
m+n=m+n
But this is always true
So limx1f(x) exists at all integral value of m and n.

flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon