wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=|x|+1,x<00,x=0|x|1,x>0 For what value(s) of a does limxaf(x) exists ?

Open in App
Solution

Step 1: Simplification given data
Given f(x)=|x|+1,x<00,x=0|x|1,x>0

We check limit different values of a
When a=0
When a<0
When a>0

Step 2: Verification of different cases

Case 1: When a=0
Limit exists at a=0 if limx0f(x)=limx0+f(x)
f(x)=|x|+1,x<00,x=0|x|1,x>0
L.H.L.=limx0f(x)=limh0f(0h)
=limh0f(h)
=limh0(|h|+1)
=limh0(h+1)
=0+1
=1

R.H.L.=limx0+f(x)=limh0f(0+h)
=limh0f(h)
=limh0(|h|1)
=limh0(h1)
=01
=1
Since L.H.L.R.H.L.
At x=0, Limit does not exist.

Case 2: When a<0
For a<0
f(x)=|x|+1
f(x)=x+1 ( As x is negative )
Since this a polynomial
Limit exists at every point less than 0.
Limit exists for a<0.

Case 3: When a>0
For a>0
f(x)=|x|1
f(x)=x+1 ( As x is positive )
Since this a polynomial
Limit exists at every point greater than 0
Limit exists for a>0

limxaf(x) exists for all values of a, where a0


flag
Suggest Corrections
thumbs-up
32
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon