Step 1: Simplification given data
Given f(x)=⎧⎪⎨⎪⎩|x|+1,x<00,x=0|x|−1,x>0
Step 2: Verification of different cases
Case 1: When a=0
Limit exists at a=0 if limx→0−f(x)=limx→0+f(x)
f(x)=⎧⎪⎨⎪⎩|x|+1,x<00,x=0|x|−1,x>0
L.H.L.=limx→0−f(x)=limh→0f(0−h)
=limh→0f(−h)
=limh→0(|−h|+1)
=limh→0(h+1)
=0+1
=1
Case 2: When a<0
For a<0
f(x)=|x|+1
f(x)=−x+1 ( As x is negative )
Since this a polynomial
Limit exists at every point less than 0.
∴ Limit exists for a<0.
Case 3: When a>0
For a>0
f(x)=|x|−1
f(x)=x+1 ( As x is positive )
Since this a polynomial
Limit exists at every point greater than 0
∴ Limit exists for a>0
∴limx→af(x) exists for all values of a, where a≠0