If f(x)=⎧⎪
⎪⎨⎪
⎪⎩x2, when x<0x, when 0≤x<11x, when x>1
Find: (i) f(12)
(ii) f(−2)
(iii) f(1)
(iv) f(√3)
(v) f(√−3)
We have,
f(x)=⎧⎪
⎪⎨⎪
⎪⎩x2, when x<0x, when 0≤x<11x, when x>1
(i) f(12)=12
(ii) f(−2)=(−2)2=4
(iii) f(1)=11=1
(iv) f(√3)=1√3
(v) f(√−3)= does not exist because √−3ϵ domain (f).