If f(x)=⎧⎪⎨⎪⎩x,when0<x1/21,whenx=1/21−x,when1/2<x<1 , then
If [.] denotes greatest integer function and f(x) = [x] {sinπ[x+1]+sinπ[x+1]1+[x]}, then
Let f(x) be defined in [–2,2] by f(x)={max{√4−x2,√1+x2}−2≤x≤0min{√4−x2,√1+x2}0<x≤2 . Then f(x) is