The correct option is C log(1√1−2x2)+C
We have,
f(x)=limn→∞(2x+4x3+…+2nx2n−1)
Let S=2x+4x3+...+2nx2n−1
This is a G.P. whose first term is 2x and common ratio is 2x2, then
S=2x[1−(2x2)n](1−2x2)
We know that
x∈(0,1√2)⇒2x2∈(0,1)
Now,
f(x)=limn→∞2x[1−(2x2)n](1−2x2)⇒f(x)=2x1−2x2
Therefore,
I=∫2x1−2x2 dx
Assuming 1−2x2=t⇒−4x dx=dt
⇒I=−12∫dtt⇒I=−12log|t|+C⇒I=−12log|1−2x2|+C
As 2x2∈(0,1)⇒1−2x2∈(0,1), so
I=log(1√1−2x2)+C