If f(x)=ln(x2+2x+2) and g is the inverse of function f, then the value of g′(ln2) is
Open in App
Solution
Given : f(x)=ln(x2+2x+2)⇒f(0)=ln2
Differentiating both sides w.r.t. x f′(x)=1x2+2x+2×(2x+2) ⇒f′(0)=1
and f−1(x)=g(x)⇒g−1(x)=f(x) ∴g(f(x))=x
Differentiating both sides w.r.t. x g′(f(x))⋅f′(x)=1 ⇒g′(f(x))=1f′(x) ⇒g′(f(0))=1f′(0) ∴g′(ln2)=1f′(0)=1