f(x)≥f(x2)
⇒log0.1(1−|x|1+|x|)≥log0.1(1−x21+x2)
⇒1−|x|1+|x|≤1−x21+x2
⇒1−|x|1+|x|−(1−|x|)(1+|x|)1+x2≤0
⇒(1−|x|)[11+|x|−1+|x|1+x2]≤0
⇒(1−|x|)[−2|x|(1+|x|)(1+x2)]≤0
⇒(1−|x|)≥0
⇒(|x|−1)≤0
⇒x∈[−1,1]
But for x=±1,f(x) is not defined.
∴x=0 is the only solution.