If f(x)=log(1+x)1-x, where -1<x<1, then f(3x+x3)(1+3x2)-f(2x)(1+x2) is equal to
[f(x)]3
[f(x)]2
-f(x)
f(x)
3f(x)
Explanation for the correct option:
Find the value of the expression:
Given,
f(x)=log(1+x)1-x
Now,
f(3x+x3)(1+3x2)-f(2x)(1+x2)=log1+(3x+x3)(1+3x2)1-3x+x31+3x2-log1+2x1+x21-2x1+x2=log1+3x2+3x+x31+3x21+3x2-3x-x31+3x2-log1+x2+2x1+x21+x2-2x1+x2=log1+x1-x3-log1+x1-x2[∵(a+b)3=a3+b3+3a2b+3b2a,(a±b)2=a2+b2±2ab]=3log1+x1-x-2log1+x1-x[∵logam=mloga]=log1+x1-x=f(x)
Hence, the correct option is D.