Iff(x)=(logcostanx)(logtanxcotx)-1+tan-1x4-x2 then f'(1) is
0
-2
13
3
Explanation for correct option:
Step 1: Simplifying the given function:
f(x)=logtanxlogcotxlogcotxlogtanx-1+tan-1x4-x2[∵logab=logbloga]=logtanx-logtanx.logtanx-logtanx+tan-1x4-x2[∵log(cotx)=log(1tanx)=-logtanx]=1+tan-12sinθ4-4sin2θputtingx=2sinθ=1+tan-12sinθ2cosθ=1+tan-1(tanθ)=1+θ=1+sin-1x2x=2sinθ
Step 2: Find the value of f'(1):
Differentiated the simplified function with respect to x.
f'(x)=11-x24.12=14-x2
Substitute x=1 in f'(x), we get
f'(1)=14-1=13
Hence, the correct option is C.
Use the factor theorem to determine whether g(x) is a factor of f(x)
f(x)=22x2+5x+2;g(x)=x+2