If f(x)=log(1+x1−x) and g(x)=3x+x31+3x2, then f(g(x)) is equal to
3f(x)
f(x)=log(1+x1−x) and g(x)=3x+x31+3x2
Now, 1+g(x)1−g(x)=1+3x+x31+3x21−3x+x31+3x2
=1+3x2+3x+x31+3x2−3x−x3=(1+x)3(1−x)3
Then, f(g(x))=log(1+g(x)1−g(x))=log(1+x1−x)3
=3 log(1+x1−x)=3f(x)