If f(x)=log(1+x1−x), then f(2x1+x2) is equal to
{f(x)}2
{f(x)}3
{2f(x)}
{3f(x)}
f(x)=log(1+x1−x) Then, f(2x1+x2)=log(1+2x1+x21−2x1+x2) =log⎛⎜⎝1+x2+2x1+x21+x2−2x1+x2⎞⎟⎠ =log((1+x)2(1−x)2) =2 log(1+x1−x) =2(f(x))