If f(x)=logtan(π4+x2), then the value of f '(0) is
A
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
-1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
\N
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
∞
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A 1 Given that, f(x)=logtan(π4+x2)Differentiatingw.r.t.xbothsides,weget⇒f'(x)=ddx(logtan(π4+x2)}⇒f'(x)=d(logtan(π4+x2)}d(tan(π4+x2))×d(tan(π4+x2))d(π4+x2)×d(π4+x2)dx⇒f'(x)=1tan(π4+x2)×sec2(π4+x2)×12⇒f'(x)=cos(π4+x2)sin(π4+x2)×1cos2(π4+x2)×12⇒f'(x)=12sin(π4+x2)cos(π4+x2)⇒f'(x)=1sin2(π4+x2)=1sin(π2+x)=1cosx⇒f'(x)=secx∴f'(0)=sec0=1