Given:
f(x) = loge (1 − x) and g(x) = [x]
Clearly, f(x) = loge (1 − x) is defined for all ( 1 x) > 0.
⇒ 1 > x
⇒ x < 1
⇒ x ∈ ( ∞, 1)
Thus, domain (f ) = ( ∞, 1)
Again,
g(x) = [x] is defined for all x ∈ R.
Thus, domain (g) = R
∴ Domain (f) ∩ Domain (g) = ( ∞, 1) ∩ R
= ( ∞, 1)
Hence,
(i ) ( f + g ) : ( ∞, 1) → R is given by ( f + g ) (x) = f (x) + g (x) = loge (1 − x) + [ x ].
(ii) (fg) : ( ∞, 1) → R is given by (fg) (x) = f(x).g(x) = loge (1 − x)[ x ] = [ x ]loge (1 − x).
(iii) Given:
g(x) = [ x ]
If [ x ] = 0,
x ∈ (0, 1)
Thus,
(iv) Given:
f(x) = loge (1 − x)
is defined if loge( 1x) is defined and loge(1 – x) ≠ 0.
⇒ (1 x) > 0 and (1 x) ≠ 0
⇒ x < 1 and x ≠ 0
⇒ x ∈ ( ∞, 0)∪ (0, 1)
Thus, = ( ∞, 1) .
(f + g)( 1) = f( 1) + g( 1)
= loge{1 – ( 1)}+ [ 1]
= loge 2 – 1
Hence, (f + g)( 1) = loge 2 – 1
(fg)(0) = loge ( 1 – 0) × [0] = 0