The correct options are
A f(x) is an odd function
C m∑r=1f(r)=5 m+1C2
f(2)=f(1+1)=2f(1)=10
f(3)=f(1+2)=f(1)+f(2)=5+10=15
⇒f(n)=5n
or, m∑r=1f(r)=5m∑r=1r=5m(m+1)2
Replacing y by −x in the given equation, we get
f(0)=f(x)+f(−x)
Also, putting x=y=0, we get
f(0)=f(0)+f(0)⇒f(0)=0
So, f(x)+f(−x)=0
Hence, f(x) is an odd function.