The correct options are
A f(x) is an odd function
D m∑r=1f(r)=5m+1C2
Let x=y=0, then the given equation is :
f(0)=2×f(0)⇒f(0)=0
Now for y=−x, we have
0=f(0)=f(x)+f(−x)
∴f(x)=−f(−x)
Hence the function is an odd function.
Now, we will prove that f(k)=5k for any natural number k
Let x=y=1, then f(2)=f(1)+f(1)=2×5
Let x=2,y=1, then f(3)=f(2)+f(1)=3×5
In general,
Let x=k−1,y=1, then f(k)=f(k−1)+f(1)=k×5
Hence,
m∑r=1f(r)=f(1)+f(2)+f(3)+⋯+f(m)
=5+10+15+⋯5m=5(1+2+3+⋯+m)=5m(m+1)2=5(m+1C2)