If f(x)=sin2x+sin2x+π3+cosxcosx+π3 and g54=1, then gof(x) is equal to
1
-1
2
-2
Explanation for the correct option.
Given, f(x)=sin2x+sin2x+π3+cosxcosx+π3 and g54=1.
f(x)=sin2x+sin2x+π3+cosx·cosx+π3=122sin2x+2sin2x+π3+2·cosx·cosx+π3=121-cos2x+1-cos2x+2π3+cos2x+π3+cosπ3[∵2·cosa·cosb=cos(a+b)+cos(a-b)&&2sin2x=1-cos2x]=1252-cos2x-cos2x+2π3+cos2x+π3=1252-2cos2x+π3cosπ3+cos2x+π3=1252-cos2x+π3+cos2x+π3=54
⇒f(x)=54
Now, find gof(x).
gof(x)=g(f(x))=g54=1[Given:g(54)=1]
Hence, the correct option is A.
The maximum value of f(x)=sin2x1+cos2xcos2x1+sin2xcos2xcos2xsin2xcos2xsin2x,x∈R is: