The correct option is D x=π4 is a point of local maxima
f(x)=sin4x+cos4x, x∈(0,π2)
f′(x)=4sin3xcosx−4cos3xsinx
=−4sinxcosx(cos2x−sin2x)
=−2sin2x⋅cos2x
=−sin4x
Now, f′(x)=0
⇒x=π4
When 0<x<π4
⇒0<4x<π
Since, siny is positive in (0,π),
sin4x>0
⇒−sin4x<0
⇒f′(x)<0
∴f is strictly decreasing in (0,π4)
When π4<x<π2
⇒π<4x<2π
Since, siny is negative in (π,2π),
sin4x<0
⇒−sin4x>0
⇒f′(x)>0
∴f is strictly increasing in (π4,π2)
For x<π4, f′(x)<0
For x>π4, f′(x)>0
⇒x=π4 is local minima.