wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=sin6x+cos6x,xR, then f(x) lies in the interval

A
[12,1]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
[12,58]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
[14,1]
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
[78,1]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C [14,1]
f(x)=sin6x+cos6x
=(sin2x)3+(cos2x)3
=(sin2x+cos2x)33sin2xcos2x(sin2x+cos2x)
=13sin2xcos2x
=13sin2x(1sin2x)
=3sin4x3sin2x+1
=3[(sin2x12)2+112]

For xR,
0sin2x1
12sin2x1212
0(sin2x12)214
112(sin2x12)2+11213
143[(sin2x12)2+112]1

Alternate:
13sin2xcos2x
=134(2sinxcosx)2
=134(sin2x)2

Now, 0(sin2x)21
3434(sin2x)20
14134(sin2x)21

flag
Suggest Corrections
thumbs-up
20
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon