If f(x)=sin log (√4−x2/(1−x)) then the domain and range f are (respectively)
consider the given function ,
f(x)=sinloge(√4−x21−x)
Now ,
for loge√4x21−x to be defined √4−x21−x>0
√4−x21−x>0
√4−x2>0, x≠1 and 1−x>0
4−x2>0 1>x
4>x2 x<1
x2−4<0
(x+2)(x−2)<0
−2<x<2
combining the two we get
−2<x<1
xϵ(−2,1)
Hence , the domain of the function is (−2,1)
Hence, this is the range of the function [−1,1]