If f(x)=sin[π2]x+sin[−π]2x, where [x] denotes teh greatest integer less than or equal to x, then,
f(π2)=1
f(π)=2
f(π4)=−1
None of these
f(x) sin [π2]x+sin [−π]2 x⇒f(x)=sin [9.8]x+sin [−9.8]x⇒f(x)=sin 9x−sin 10xf(π2)=sin 9×π2−sin 10×π2⇒f(π2)=1−0=1