If f(x)=sin{[x+5]+{x−{x−{x}}}} for xϵ(0,π4) is invertible, where {.} and [.] represent fractional part and greatest integer functions respectively, then f−1(x) is
sin−1x
π2−cos−1x
sin−1{x}
∵{[x+5]+{x−{x−{x}}}}
={[x+5]+{x−{[x]}}
={[x+5]+{x}}={{x}}={x}
so f(x)=sin{x} for x ϵ (0,π4)
so f(x)=sinx
so f−1(x)=sin−1(x)
=sin−1{x}=π2−cos−1x