The correct option is A π/4
We have
f(x)=sinx+cosx=√2sin(x+π4)
and, g(x)={|x|x,x≠02,x=0
⇒g(x)=⎧⎪⎨⎪⎩1,x>02,x=0−1,x<0
∴gof(x)=⎧⎪
⎪⎨⎪
⎪⎩1,ifx∈(−π/4,3π/4)∪(7π/4,2π)2,ifx=−π4,3π4,7π4−1,ifx∈(3π/4,7π/4)
∴∫2π−π/4gof(x)dx=∫3π/4−π/41dx+∫7π/43π/4−1dx+∫2π7π/41dx
=1(3π4+π4)−(7π4−3π4)+(2π−7π4) =π−π+π4=π4