If f(x)sinxcosxdx=12(b2−a2)log(f(x))+c, then f(x) =
A
1a2sin2x+b2cos2x
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1a2sin2x−b2cos2x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1a2cos2x+b2sin2x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1a2cos2x−b2sin2x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A1a2sin2x+b2cos2x Since ∫f(x)sinxcosxdx=12(b2−a2)log(f(x))+c Therefore f(x)sinxcosx=12(b2−a2).1f(x)f′(x) Differentiating both sides w.r.t x ⇒2(b2−a2)sinxcosx=f′(x)f(x)2 ⇒∫(2b2sinxcosx−2a2sinxcosx)dx=∫f′(x){f(x)2}dx ⇒(−b2cos2x−a2sin2x)=−1f(x) ⇒f(x)=1(a2sin2x+b2cos2x)