The correct option is B f is many-one function
Given f(x)=[sinx+[cosx+[tanx+[secx]]]]
=[sinx+p], where p=[cosx+[tanx+[secx]]]
=[sinx]+p, (as p is an integer)
=[sinx]+[cosx+[tanx+[secx]]]
=[sinx]+[cosx]+[tanx]+[secx]
Now, for x∈(0,π4),sinx∈(0,1√2),cosx∈(1√2,1),tanx∈(0,1),secx∈(1,√2)
⇒[sinx]=0,[cosx]=0,[tanx]=0 and [secx]=1
⇒ The range of f(x) is {1}.
So, for the given interval f(x) has only one value.
Hence, it will be a many-one function.