If f(x)=−√25−x2, then find limx→1(f(x)−f(1)x−1)
f(x)=−√25−x2
limx→1(f(x)−f(1)x−1)
=limx→1(−√25−x2+√24x−1)
Put x=1
=(−√24+√240)
=00
=limx→1(−√25−x2+√24x−1)
By differentiating the both numerator and the denomitors with respect to 'x'
=limx→1x√25−x2
∴If f(x)=−√25−x2 then limx→1(f(x)−f(1)x−1)=12√6