The correct options are
A Range of f(x) is [0,∞)
C Domain of f(x) is (−∞,−12]∪[1,∞)
f(x)=√3|x|−x−2 is defined when 3|x|−x−2≥0
Case 1: When x<0
−3x−x−2≥0⇒x≤−12
⇒x∈(−∞,−12]
Now, let f(x)=y⇒y≥0
⇒y2=−4x−2⇒y2+2=−4x∵x≤12⇒−x≥12⇒−4x≥2⇒y2+2≥2⇒y∈[0,∞)
Case 2: When x≥0
3x−x−2≥0⇒x≥1
⇒x∈[1,∞)
Now, let f(x)=y⇒y≥0
⇒y2=2x−2⇒y2+2=2x∵x≥1⇒2x≥2⇒y2+2≥2 ⇒y∈[0,∞)
Hence, domain of f(x) is (−∞,−12]∪[1,∞) and range of f(x) is [0,∞)