wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=tan1(2x)+λ is an odd function, where λ is

Open in App
Solution

f(x) is an odd function, so

f(x)=f(x)

tan1(2x)+λ=(tan1(2x)+λ)

tan1(2x)+λ=tan1(2x)λ

2λ=tan1(2x)+tan1(2x)

2λ=tan1(12x)+tan1(2x)

2λ=cot1(2x)+tan1(2x) (cot1(x)=tan1(1x)forx>0)

2λ=π2

λ=π4


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Piecewise Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon