wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=tan1(1x21x2+2x21)+sin1(x21|x|), then the number of solution(s) of the equation tan(f(x))=|x22| is

Open in App
Solution

f(x)=tan1(1x21x2+2x21)+sin1(x21|x|)
For the root to be defined, we get
x210x(,1][1,)
Putting x=secθ, we get
f(x)=tan1(1sec2θ1sec2θ+2sec2θ1)+sin1(sec2θ1|secθ|)f(x)=tan1(1|tanθ|sec2θ+2|tanθ|)+sin1(|tanθ||secθ|)f(x)=tan1⎜ ⎜1|tanθ|1+tan2θ+2|tanθ|⎟ ⎟+sin1(|sinθ|)f(x)=tan1(1|tanθ||1+|tanθ||)+sin1(|sinθ|)

When θ[0,π2],
f(x)=tan1(1tanθ1+tanθ)+sin1(sinθ)f(x)=tan1[tan(π4θ)]+θf(x)=π4θ+θf(x)=π4

When θ[π2,π],
f(x)=tan1(1+tanθ1tanθ)+sin1(sinθ)f(x)=tan1[tan(π4+θ)]+sin1(sinθ)f(x)=π4+θπ+(πθ)f(x)=π4

Now, tan(f(x))=|x22|
|x22|=tan45x22=±1x2=1,3x=±1,±3

Hence, the number of solutions is 4.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Relation Between Differentiability and Continuity
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon