f(x)=tan−1(1−√x2−1√x2+2√x2−1)+sin−1(√x2−1|x|)
For the root to be defined, we get
x2−1≥0⇒x∈(−∞,−1]∪[1,∞)
Putting x=secθ, we get
f(x)=tan−1(1−√sec2θ−1√sec2θ+2√sec2θ−1)+sin−1(√sec2θ−1|secθ|)⇒f(x)=tan−1(1−|tanθ|√sec2θ+2|tanθ|)+sin−1(|tanθ||secθ|)⇒f(x)=tan−1⎛⎜
⎜⎝1−|tanθ|√1+tan2θ+2|tanθ|⎞⎟
⎟⎠+sin−1(|sinθ|)⇒f(x)=tan−1(1−|tanθ||1+|tanθ||)+sin−1(|sinθ|)
When θ∈[0,π2],
f(x)=tan−1(1−tanθ1+tanθ)+sin−1(sinθ)⇒f(x)=tan−1[tan(π4−θ)]+θ⇒f(x)=π4−θ+θ⇒f(x)=π4
When θ∈[π2,π],
f(x)=tan−1(1+tanθ1−tanθ)+sin−1(sinθ)⇒f(x)=tan−1[tan(π4+θ)]+sin−1(sinθ)⇒f(x)=π4+θ−π+(π−θ)⇒f(x)=π4
Now, tan(f(x))=|x2−2|
⇒|x2−2|=tan45∘⇒x2−2=±1⇒x2=1,3∴x=±1,±√3
Hence, the number of solutions is 4.