Given :
f(x)=tan−1(cosec (tan−1x)−tan(cot−1x))
=tan−1[cosec(cosec−1√1+x2x)−tan(tan−11x)]
=tan−1[√1+x2x−1x]
=tan−1[√1+x2−1x]
Putting x=tanθ
=tan−1[secθ−1tanθ]
=tan−1[1−cosθsinθ]
=tan−1⎡⎢
⎢
⎢⎣2sin2θ22sinθ2⋅cosθ2⎤⎥
⎥
⎥⎦
=tan−1tanθ2=θ2
∴f(x)=12tan−1x
Differentiating both sides w.r.t. x
f′(x)=12(1+x2)
⇒f′(1)=14
∴8f′(1)=2