If f(x)=loge(1−x) and g(x)=[x] then find:
(i) (f+g)(x)
(ii) (fg)(x)
(iii) (fg)(x)
(iv) (gf)(x)
Also find (f+g)(−1), (fg)(0), (fg)(−1), (gf(12))
Clearly, loge(1−x) is defined only when 1−x>0, i.e., x<1
∴dom (f)=(−∞,1)
Also, dom (g)=R
∴dom (f)∩dom (g)=(−∞,1)∩R=(−∞,1)
(i) (f+g):(−∞,1)→R is given by
(f+g)(x)=f(x)+g(x)=loge(1−x)+[x]
(ii) (fg):(−∞,1)→R is given by
(fg)(x)=f(x)×g(x)=loge(1−x)×[x]
(iii) {x:g(x)=0}={x:[x]=0}=[0,1)
∴dom(fg)=dom(f)∩dom(g)−{x:g(x)=0}
=(−∞,1)∩R−[0,1)=(−∞,0)
∴fg:(−∞,0)→R is given by
(fg)(x)=f(x)g(x)=loge(1−x)[x]
(iv) {x:f(x)=0}={x:loge(1−x)=0}={0}
∴dom(gf)=dom(g)∩dom(f)−{x:f(x)=0}
=R∩(−∞,1)−{0}=(−∞,0)∪(0,1)
∴gf:(−∞,0)∪(0,1)→R is given by
(gf)(x)=g(x)f(x)=[x]loge(1−x)
Now, we have:
(f+g)(−1)=f(−1)+g(−1)=[−1]+loge(1+1)=(loge2)−1
(fg)(0)=f(0)×g(0)=loge(1−0)×[0]=(loge1×0)=(0×0)=0.
(fg)(−1)=f(−1)g(−1)=[−1]loge(1+1)=−1loge2
(gf)(12)=g(12)f(12)=[12]loge(1−12)=[0.5]loge(12)=0.