wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=loge(1x) and g(x)=[x] then find:

(i) (f+g)(x)

(ii) (fg)(x)

(iii) (fg)(x)

(iv) (gf)(x)

Also find (f+g)(1), (fg)(0), (fg)(1), (gf(12))

Open in App
Solution

Clearly, loge(1x) is defined only when 1x>0, i.e., x<1

dom (f)=(,1)

Also, dom (g)=R

dom (f)dom (g)=(,1)R=(,1)

(i) (f+g):(,1)R is given by

(f+g)(x)=f(x)+g(x)=loge(1x)+[x]

(ii) (fg):(,1)R is given by

(fg)(x)=f(x)×g(x)=loge(1x)×[x]

(iii) {x:g(x)=0}={x:[x]=0}=[0,1)

dom(fg)=dom(f)dom(g){x:g(x)=0}

=(,1)R[0,1)=(,0)

fg:(,0)R is given by

(fg)(x)=f(x)g(x)=loge(1x)[x]

(iv) {x:f(x)=0}={x:loge(1x)=0}={0}

dom(gf)=dom(g)dom(f){x:f(x)=0}

=R(,1){0}=(,0)(0,1)

gf:(,0)(0,1)R is given by

(gf)(x)=g(x)f(x)=[x]loge(1x)

Now, we have:

(f+g)(1)=f(1)+g(1)=[1]+loge(1+1)=(loge2)1

(fg)(0)=f(0)×g(0)=loge(10)×[0]=(loge1×0)=(0×0)=0.

(fg)(1)=f(1)g(1)=[1]loge(1+1)=1loge2

(gf)(12)=g(12)f(12)=[12]loge(112)=[0.5]loge(12)=0.


flag
Suggest Corrections
thumbs-up
10
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Laws of Logarithms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon