The correct option is D f is derivable at x=1
For continuity,
L.H.L.=limx→1−f(x)=limx→1−(x−1)2
=limh→0(1−h−1)2=limh→0h2
=0
R.H.L.=limx→1+f(x)=limx→1+(x−1)2
=limh→0(1+h−1)2=limh→0h2
=0
⇒L.H.L.=R.H.L.=f(1)
So, f(x) is continuous at x=1
For differentiablity,
R.H.D.
f′(1+)=limh→0f(1+h)−f(1)h
=limh→0h2−0h
=limh→0h
⇒f′(1+)=0
L.H.D.
f′(1−)=limh→0f(1−h)−f(1)−h
=limh→0h2−0−h
=−limh→0(−h)
⇒f′(1−)=0
⇒L.H.D.=R.H.D.
Hence, f(x) is derivable at x=1