(c) e Suppose fx is continuous at x=0. Given: fx=x+1cotx log fx=cot x log x+1 Taking log on both sides⇒limx→0log fx=limx→0cot x log x+1⇒limx→0log fx=limx→0log x+1tan x⇒limx→0log fx=limx→0log x+1xtan xx⇒limx→0log fx=limx→0log x+1xlimx→0tan xx⇒log limx→0fx=limx→0log x+1xlimx→0tan xx ∵ fx is continuous at x=0⇒log limx→0fx=1⇒limx→0fx=e⇒f0=e ∵ fx is continuous at x=0