The correct option is A 5050
f(x)=x100+x99+...+x+1
Differentiating both sides with respect to x, we get
f′(x)=ddx(x100+x99+...+x+1)
f′(x)=ddx(x100)+ddx(x99)+...+ddx(x2)+ddx(x)+ddx(1)
=100x99+99x98+...+2x+1+0 (y=xn⇒dydx=nxn−1)
=100x99+99x98+...+2x+1
Putting x=1, we get
f′(1)=100+99+98+...+2+1
=100(100+1)2 Sn=n(n+1)2
=50×101=5050
Hence, the correct answer is option (a).