The correct option is B −60
f(x)=x3−3x2−9x+16
Differentiating w.r.t. x, we get
f′(x)=3x2−6x−9
For critical points, we have
f′(x)=0
⇒x2−2x−3=0
⇒x=−1,3
For finding the absolute minimum value, we evaluate f at the critical points and the end points.
f(3)=(3)3−3(3)2−9(3)+16=−11
f(−4)=(−4)3−3(−4)2−9(−4)+16=−60
f(4)=−4
f(−1)=21
∴ The minimum value of f(x) in the interval [−4,4] is −60.