If f(x)=|x|3,show that f′′(x) exists for all x and find it.
Here, f(x)=|x|3When x≤0,f(x)=|x|3=x3Differentiating both sides w.r.t.x,we haveddx[f(x)]=ddx(x3)⇒ f′(x)=3x2Again differentiating both sides w.r.t. x,we haveddx[f′(x)]=ddx(3x2)⇒ f′′(x)=6xWhen x<0,f(x)=|x|3=−x3Differentiating both sides w.r.t. x,we haveddx[f(x)]=ddx(−x3)⇒ f′(x)=−3x2Again differentiating both sides w.r.t.x,we getddx[f′(x)]=ddx(−3x2)−6xddxf′′(x)=−6x. Hence, f′(x)={6x, x≥0−6x, x<0